Symmetrized Regression for Hyperspectral Background Estimation

نویسنده

  • James Theiler
چکیده

We can improve the detection of targets and anomalies in a cluttered background by more effectively estimating that background. With a good estimate of what the target-free radiance or reflectance ought to be at a pixel, we have a point of comparison with what the measured value of that pixel actually happens to be. It is common to make this estimate using the mean of pixels in an annulus around the pixel of interest. But there is more information in the annulus than this mean value, and one can derive more general estimators than just the mean. The derivation pursued here is based on multivariate regression of the central pixel against the pixels in the surrounding annulus. This can be done on a band-by-band basis, or with multiple bands simultaneously. For overhead remote sensing imagery with square pixels, there is a natural eight-fold symmetry in the surrounding annulus, corresponding to reflection and right angle rotation. We can use this symmetry to impose constraints on the estimator function, and we can use these constraints to reduce the number or regressor variables in the problem. This paper investigates the utility of regression generally – and a variety of different symmetric regression schemes particularly – for hyperspectral background estimation in the context of generic target detection.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Spectral-Spatial Classification of Hyperspectral Images Using Approximate Sparse Multinomial Logistic Regression

Abstract: We propose the sparse multinomial logistic regression (SMLR) model for spectral-spatial classification of hyperspectral images. In the proposed method, the parameters of SMLR are iteratively estimated from logposterior by using Laplace approximation. The proposed update rule provides a faster convergence compared to the state-of the-art methods used for SMLR parameter estimation. The ...

متن کامل

Predicting of the Quality Attributes of Orange Fruit Using Hyperspectral Images

Background: Hyperspectral image analysis is a fast and non-destructive technique that is being used to measure quality attributes of food products. This research investigated the feasibility of predicting internal quality attributes, such as Total Soluble Solids (TSS), pH, Titratable Acidity (TA), and maturity index (TSS/TA); and external quality attributes such as color components (L*, a*, b*)...

متن کامل

انجام یک مرحله پیش پردازش قبل از مرحله استخراج ویژگی در طبقه بندی داده های تصاویر ابر طیفی

Hyperspectral data potentially contain more information than multispectral data because of their higher spectral resolution. However, the stochastic data analysis approaches that have been successfully applied to multispectral data are not as effective for hyperspectral data as well. Various investigations indicate that the key problem that causes poor performance in the stochastic approaches t...

متن کامل

Target Detection Improvements in Hyperspectral Images by Adjusting Band Weights and Identifying end-members in Feature Space Clusters

          Spectral target detection could be regarded as one of the strategic applications of hyperspectral data analysis. The presence of targets in an area smaller than a pixel’s ground coverage has led to the development of spectral un-mixing methods to detect these types of targets. Usually, in the spectral un-mixing algorithms, the similar weights have been assumed for spectral bands. Howe...

متن کامل

Estimating the Biomass of Maize with Hyperspectral and LiDAR Data

The accurate estimation of crop biomass during the growing season is very important for crop growth monitoring and yield estimation. The objective of this paper was to explore the potential of hyperspectral and light detection and ranging (LiDAR) data for better estimation of the biomass of maize. First, we investigated the relationship between field-observed biomass with each metric, including...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015